报告题目:多电子转换反应正极与高比能电池电化学
报 告 人:吴飞翔教授
报告时间:1月8日星期五下午2点
报告地点:将军路校区新材料大楼A212
主办单位:开云Kaiyun
报告人简介:
吴飞翔,中南大学教授,博士生导师,冶金+前沿科学中心副主任, 国家青年特聘专家,德国洪堡学者。本、硕、博毕业于中南大学冶金与环境学院,美国佐治亚理工学院联合培养博士研究生,佐治亚理工学院Yushin教授课题组博士后研究员,德国马普固体研究所Maier教授课题组研究员。主要从事材料化冶金、高比能二次电池关键材料设计与材料界面科学的应用基础研究,主持国家级青年人才计划、国家自然科学基金(青年)、中南大学创新驱动等项目。已在Chemical Society Reviews, Advanced Materials (5), Energy & Environmental Science (2), Advanced Energy Materials, Advanced Functional Materials, ACS Nano (3), Nature Communications, Nano Letters, Joule, Materials Today (2), Nano Energy (2), Journal of Materials Chemistry A, Journal of Energy Chemistry (2), Hydrometallurgy等国际知名期刊上发表学术论文五十多篇,授权中国和国际发明专利共6项。目前担任国际顶尖期刊Materials Today(IF:26.4)的副主编(Associate Editor)和物理化学学报青年编委。联系邮箱:feixiang.wu@csu.edu.cn
报告摘要:
Commercial lithium-ion (Li-ion) batteries built with Ni- and Co-based intercalation-type cathodes suffer from low specific energy, high toxicity and high cost. Further increase in the energy storage characteristics of such cells is challenging because capacities of such intercalation compounds approach their theoretical values and further increase in their maximum voltage induces serious safety concerns. The growing market for portable energy storage is undergoing a rapid expansion as new applications demand lighter, smaller, safer and lower cost batteries to enable broader use of plug-in hybrid and pure-electric vehicles (PHEV and EV), drones and renewable energy sources, such as solar and wind. Conversion-type cathode materials are some of the key candidates for the next-generation of rechargeable Li and Li-ion batteries. Continuous rapid progress in performance improvements of such cathodes is essential to utilize them in future applications. In this talk we will consider price, abundance and safety of elements in the periodic table for their use in conversion cathodes. We further compare specific and volumetric capacities of a broad range of conversion materials. By offering a model for practically achievable volumetric energy density and specific energy of Li cells with graphite, silicon (Si) and lithium (Li) anodes, we observe the impact of cathode chemistry directly. This allows us to estimate potentials of different conversion cathodes for exceeding the energy characteristics of cells built with state of the art intercalation compounds. We additionally discuss the key challenges faced when using conversion-type active materials in cells and general strategies to overcome them. Finally, we discuss our recent results on conversion cathode materials, including sulfur-based cathodes and metal fluorides.